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Abstract

The problem of the orbital stability of periodic motions, produced from an equilibrium position of an autonomous Hamiltonian
system with two degrees of freedom is considered. The Hamiltonian function is assumed to be analytic and alternating in a certain
neighbourhood of the equilibrium position, the eigenvalues of the matrix of the linearized system are pure imaginary, and the
frequencies of the linear oscillations satisfy a 3:1 ratio. The problem of the orbital stability of periodic motions is solved in a
rigorous non-linear formulation. It is shown that short-period motions are orbitally stable with the sole exception of the case
corresponding to bifurcation of short-period and long-period motions. In this particular case there is an unstable short-period orbit.
It is established that, if the equilibrium position is stable, then, depending on the values of the system parameters, there is only one
family of orbitally stable long-period motions, or two families of orbitally stable and one family of unstable long-period motions. If
the equilibrium position is unstable, there is only one family of unstable long-period motions or one family of orbitally stable and
two families of unstable long-period motions. Special cases, corresponding to bifurcation of long-period motions or degeneration
in the problem of stability, when an additional analysis is necessary, may be exceptions. The problem of the orbital stability of the
periodic motions of a dynamically symmetrical satellite close to its steady rotation is considered as an application.
© 2007 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

Consider a system with two degrees of freedom, the motion of which is described by the Hamilton equations

(1.1)

Suppose the origin of coordinates qj = pj = 0 (j = 1, 2) of phase space is an equilibrium position, while the Hamiltonian
function H is analytic in a certain part of its neighbourhood and depends explicitly on the time t.

We will assume that the roots ±i�j (�j > 0, j = 1, 2) of the characteristic equation of the linearized system (1.1) are
pure imaginary, while the quadratic part of the Hamiltonian function is alternating. We will assume, moreover, that
there is exact resonance of the fourth order, i.e. the frequencies of linear oscillations are connected by the relation
�1 = 3�2. In this case the canonical variables qj,pj (j = 1, 2) can be chosen so that the Hamiltonian function does not
contain terms of the third and fifth powers, while terms of the second, fourth and sixth powers are reduced to normal
form.
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With this choice of variables, the Hamiltonian H has the form1

(1.2)

(1.3)

(1.4)

where b, csl (s + l = 2, 3) are constant coefficients. We will further assume that the limitations b �= 0 and
c20 + 3c11 + 9c02 �= 0 are satisfied. The form H̃6 contains resonance terms of the sixth power in qj and pj, the explicit
form of which will not be further necessary. Here and henceforth we will denote by On the series in powers of canonical
variables beginning with terms of power no less than n.

We will make the canonical replacement of variables qj, pj → xj, yj in accordance with the formulae qi =√
���2/cxi, pi = √

���2/cyi, c = c20 + 3c11 + 9c02, � = sign(�2/c), where �(� � 1) is a quantity which defines
the order of smallness of the neighbourhood of the equilibrium position considered.

If, moreover, we introduce the new independent variable � = �2t, Hamiltonian (1.2) takes the form

(1.5)

where

(1.6)

Note that the coefficients aij are connected by the relation a20 + 3a11 + 9a02 = �.
In this paper, we solve, in a rigorous non-linear formulation, the problem of the orbital stability of the periodic

motions of system (1.1), produced from the equilibrium position. A non-linear analysis of the orbital stability of
periodic motions was carried out previously2–5 for resonances of the first, second and third orders. We use a similar
investigation procedure below.

2. The stability of short-period motions

The system of equations (1.1) possesses families of periodic motions, created from the equilibrium position. In this
section we investigate, in a rigorous non-linear formulation, the orbital stability of the periodic motions, the period
of which with respect to � is close to 2�/3. In the terminology employed, motions of this type will be called short-
period motions, unlike the long-period motions whose period with respect to � is close to 2� (see Section 3). The
existence of a family of short-period motions follows from Lyapunov’s theorem on the holomorphic integral.6 On the
basis of this theorem it can also be asserted7,8 that, by an almost identical canonical transformation of the variables
xj, yj → x′

j, y′
j (j = 1, 2), which converges for fairly small �, Hamiltonian (1.5) can be reduced to the form

where H0 depends only on r′2
2 and on the small parameter �. This transformation does not change the form of terms of

order �2 inclusive, written explicitly in Hamiltonian (1.5).
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To investigate the orbital stability of short-period motions we will change to the variables�1, R1, X2, Y2 using the
formulae

In these variables the short-period motions are described by the family of solutions

(2.1)

where C > 0 and �0 are arbitrary constants, the first of which represents the amplitude of the short-period motion. The
frequency �1 depends on the amplitude C and can be represented in the form

(2.2)

We will introduce the perturbations �1, 	2, 
2

The Hamiltonian of the perturbed motion can be represented in the form of a converging series

(2.3)

where �m is the form of power m in
√|�1|, 	2, 
2 with coefficients that are 2�-periodic in �1. The forms �m depend

analytically on the small parameter �. For m = 2, 3, 4 their expansions in series in powers of � havethe form

(2.4)

where Γ ∗
2 (	2, 
2, �1, �) is the quadratic form of the variables 	2, 
2, the coefficients of which are 2�-periodic

functions of the variable �1 and depend analytically on the small parameter �.
The problem of the orbital stability of the short-period motions is equivalent to the problem of the stability of the

canonical system with Hamiltonian (2.3) with respect to the variables �1, 	2, 
2.
Following the procedure employed to analyse the stability of Hamiltonian systems,1 we obtain the normal form of

the Hamiltonian (2.3) and then apply the results of the KAM theory.8,9

Since, for any integer n, the inequality n�1 �= 2 is satisfied, which guarantees that there is no parametric resonance,
then, using the canonical univalent replacement of variables �1, �1, 	2 
2 → �̃1, �̃1, 	̃2 
̃2, which is real, analytic in
� close to identical, 2�-periodic in �1 and linear in 	2, 
2 (see, for example, Ref. 1) the Hamiltonian function (2.3)
can be reduced to the form

(2.5)

The forms �̃3 and �̃4, apart from terms of the order of �2, are identical with �3 and �4, while the part of the new
Hamiltonian (2.5), quadratic in the variables |�̃1|1/2, 	̃2, 
̃2 is written in normal form, where the quantity �2 depends
analytically on the small parameter �. The expansion of �2 in series in powers of �, calculated taking into account
terms up to the sixth order inclusive in the initial Hamiltonian (1.2), has the form

(2.6)
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We can normalize terms of the third and fourth power of Hamiltonian (2.5), for example, by the Deprit–Hori
method1,10 The canonical normalizing transformation �̃1, �̃1, 	̃2, 
̃2 → �1, I1, u2, v2 will be real, close to identical,
analytic in I1, u2, v2 and 2�-periodic in w1.

Since �1 ≈ 3 and �2 ≈ 1, when the equality �1 �= 3�2 is satisfied in the system with Hamiltonian (2.5) resonances
of lower orders are impossible and the normalized Hamiltonian has the form

(2.7)

Without dwelling on detailed calculations, we will write expressions for the coefficients of the normal form

(2.8)

where � = 3a11 + 2a20; the case � = 0 is not considered in this paper.
On the basis of the Arnol’d-Moser theorem,8,9 when the condition for isoenergetic non-degeneracy

is satisfied, the system with Hamiltonian (2.3) is Lyapunov stable. Since, in view of the limitation imposed above,
 �= 0, for fairly small � the inequality �1 �= 0 holds and the short-period motion is orbitally stable.

Suppose now that the resonance relation �1 = 3�2 is satisfied. We will show that in this case instability of the
short-period motion occurs. For this purpose we consider the motion of a system with Hamiltonian (2.5) at the energy
level �̃ = 0.

The coordinate �̃1 is an increasing function of time, and hence to describe the motion at a fixed energy level
we can take the independent variable as the new variable. From the equation �̃ = 0 for small 	̃2, 
̃2, �̃1 we have
�̃1 = −K(	̃2, 
̃2, �̃1). The canonical system (Whittaker’s equation) with Hamiltonian K and independent variable �̃1
describes the evolution of the variables 	2, 
2 at the zero isoenergy level. The expansion of K(	̃2, 
̃2, �̃1) in series in
powers of 	2, 
2 has the form

(2.9)

where

(2.10)

and Km is a form of power m in 	̃2, 
̃2 with coefficients that are 2�-periodic in �̃1 and analytic with respect to �.
It follows from relations (2.10) that the resonance case � = −1/3 considered is only possible for fairly small �,

namely when � ∼ �, and hence we will henceforth put � = ��0, where �2 �= 0. Then by the implicit-function theorem
there exists furthermore a unique value C = C* of the amplitude of the short-period motion, for which the resonance
relation � = −1/3 holds. We have the following expression for C*

(2.11)

Note that this value of the amplitude corresponds to bifurcations of the short-period and long-period motions. Hence,
when C = C* a third-order resonance occurs in the system with Hamiltonian (2.9). In this case a canonical, analytic in
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�, 2�-periodic in �̃1 replacement of variables exists which converts Hamiltonian (2.9) to the following normal form1

(2.12)

The coefficients d30 and d03 depend analytically on �, where we have the following estimates

According to the results of an investigation of the stability of non-autonomous Hamiltonian systems with a single
degree of freedom for resonances1, a system with Hamiltonian (2.12) is unstable when d2

30 + d2
03 �= 0. Since, for fairly

small � this condition is obviously satisfied, short-period motion with amplitude C = C* is orbitally unstable.

3. Investigation of the stability of long-period motions in the linear approximation

As has already been noted, in addition to the family of short-period motions, system (1.1) with Hamiltonian (1.5)
possesses families of long-period motions, which are also created from the equilibrium position, but have a period with
respect to � close to 2�. In the resonance case considered, the existence of long-period motions does not follow from
Lyapunov’s theorem on the holomorphic integral. The problem of the existence of long-period motions in the case of
fourth-order resonance has been investigated in Refs 11–13. The most complete results were obtained by Schmidt,13

who also considered the linear problem of the orbital stability of long-period motions in the case of a positive-definite
quadratic part of the initial Hamiltonian. Orbital stability of long-period motions in the case of an alternating quadratic
part of the Hamiltonian has not been previously considered.

Long-period motions can be constructed in the form of converging series in powers of the small parameter �.11–13

In this case the first approximation is the solution of the truncated system with Hamiltonian

(3.1)

which is obtained from Hamiltonian (1.5) if terms of the order of �2 and higher are dropped, and a canonical replacement
of variables is then carried out using the formulae

In addition to the energy integral H* = const, the truncated system has one other first integral 3R1-R2 = const. Bearing
this in mind, we introduce the new canonical variables

(3.2)

In these variables the truncated Hamiltonian takes the form

(3.3)

The quantities � and � were introduced in Sections 1 and 2 respectively. Without loss of generality we can assume � = 1.
The variable � is a cyclic coordinate, while the momentum J corresponding to it is the first integral of the truncated
system. We will further put J = J0 = const. The change in the variables � and R is described by the canonical system of
equations

(3.4)

in which J0 plays the role of the parameter.
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Fig. 1.

In system (3.4) there are equilibrium positions

(3.5)

corresponding to periodic solutions of the truncated system. The quantity x in (3.5) is the real root of the equation

(3.6)

Equation (3.6) is invariant under the replacement  → −, and hence, without loss of generality, we can put  > 0.
We will investigate how the roots of Eq. (3.6) depend on the parameters � and . We first note that when  = 1 this

equation degenerates into a quadratic equation. Suppose  �= 0. A simple analysis then shows that for values of the
parameters which satisfy the equation

(3.7)

Eq. (3.6) has a multiple root. Equation (3.7) defines two curves �1 and �2 in the half-plane  > 0 (see Fig. 1; the curves
�1 and �2 are dealt with in Section 4). The curves �1 and �2 and the straight line  = 1 split the half-plane  > 0 into
six regions, in which Eq. (3.6) has a fixed number of real roots. In regions 1, 2, 5 and 6 Eq. (3.6) has three different
real roots, which we will denote by x0, x1 and x2, while in regions 3 and 4 it has one real root x0. The root x0 depends
continuously on the parameter �, and a continuous dependence on  occurs in the intervals (0;1) and (1; +∞). The
roots x1 and x2 depend continuously on the parameter in the regions in which it exists and on their boundaries, with
the sole exception of the boundary separating regions 1 and 2. On the boundaries �1 and �2 the roots x1 and x2 merge,
forming a multiple root, which disappears on passing into regions 3 and 4. Henceforth, to fix our ideas, we will put
x1 < x2.

On the boundary of regions 1 and 2 ( = 1 and � ∈ (−∞; 1/2)) Eq. (3.6) has two different real roots x(1) and x(2)

(x(1) < x(2)), where

(3.8)

On the boundary of regions 3 and 4 ( = 1 and � ∈ (1/2; 9/2)) there are no real roots, while on the boundary of regions
5 and 6 ( = 1 and � ∈ (9/2; +∞)) Eq. (3.6) has two different real roots, which are the roots x1 and x2 also from regions
5 and 6, that transfer continuously through the boundary.

In Fig. 2 we show graphs of the roots x0, x1 and x2 against the parameter � (for fixed ) for the cases 0 <  < 1 and
 > 1.

Note also that the boundary curves �1 and �2 may specify the following equations parametrically

(3.9)

The parameter s is the multiple root of Eq. (3.6). It takes the values in the intervals (−∞; −√
3(1 + √

3)/4) ∪
(0; +∞) and (−√

3(1 + √
3)/4; −1) on curves �1 and �2 respectively.
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Fig. 2.

A family of long-period motions of the truncated system with Hamiltonian (3.1), which depends on the parameter
J0, corresponds to each root of Eq. (3.6). The long-period motions of the whole system can be constructed using the
approach described in Refs 2 and 3. To do this it is necessary to carry out an isoenergetic reduction and transfer to
Whittaker equations, using the coordinate � as the independent variable, and then use the Poincaré small-parameter
method to construct periodic solutions of the reduced system, created from the equilibrium position. The long-period
motions of the complete system, constructed using this method, in the variables �, �, J, R will have the form

(3.10)

The terms O(�) are series in powers of � with coefficients that are 2�-periodic in �.
We will make a replacement of variables in accordance with the formulae

where the pair of variables �, J undergo an identical transformation but the old notation is retained for them. The
long-period motions in the variables �, J, 	, 
 have the form

(3.11)

We will introduce the perturbations �, 	, 


(3.12)

and expand the Hamiltonian of the perturbed motion in series in powers of �, 	, 


(3.13)

where �m is a form of power m in
√|�|, 	, 
 with coefficients that are 2�-periodic in �1 and analytic in �. The

expressions for �m (m = 2, 3, 4) have the form

(3.14)

where
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(3.15)

Explicit expressions for the constant coefficients b1,. . ., b4 will not be necessary in what follows.
In a linear system with Hamiltonian �2 the equations corresponding to two pairs of canonical variables can be

considered separately. The first pair of canonical variables describes harmonic oscillations with frequency �1, and
hence to solve the problem of the stability of a linear system it is sufficient to analyse the characteristic equation of the
canonical system with Hamiltonian �∗

2 = h20	2 + h02	2 + O(�2). We have

(3.16)

(3.17)

where x is the real root of Eq. (3.6). If � < 0, then for sufficiently small � the characteristic equation (3.16) has a positive
root. In this case, by Lyapunov’s theorem on stability to a first approximation, orbital instability of the long-period
motions occurs. If � > 0, then for sufficiently small � the roots of the characteristic equation are pure imaginary and
we can conclude that the long-period motions are stable in the linear approximation.

Bearing Eqs (3.9) in mind, it can be shown that the numerator of expression (3.17) can only vanish in two cases:
either at the boundaries �1 and �2, provided that x is a multiple root of Eq. (3.6), or when x = 0, where the latter is only
possible when � = 0. The case J0 = 0, when long-period motions degenerate into an equilibrium position, is not taken
into consideration. The denominator of expression (3.17) only vanishes in the special case when  = 0, which is not
considered in this paper.

Hence, taking into account the continuous dependence of the roots xi, (i = 0, 1, 2) of Eq. (3.6) on the parameters 
and �, we can determine the sign of � in regions 1–6 (Fig. 1) for each family of long-period motions.

In fact, in the region 0 <  < 1 the root x0 depends continuously on the parameters and does not vanish, and hence in
this region the values of � have the same sign, which can be determined by calculating the value of � at an arbitrary
point of this region. In the region  > 1 the root x0 also depends continuously on the parameters, but it vanishes when
� = 0. However, as can easily be seen, the quantity � > 0 does not change its sign when the root x0 passes through zero,
and hence in the region  > 1 also the quantity � takes values of one sign. Simple calculations show that for x = x0 in the
region 0 <  < 1 the value of � is positive, while in the region  > 1 (with the exception of � = 0) it is negative, and hence
the long-period motions corresponding to the root x = x0 are orbitally stable to a linear approximation when 0 <  < 1
and unstable when  > 1, � �= 0. The case  > 1, � = 0 requires a separate analysis, taking into account terms higher than
the fourth power in Hamiltonian (1.2) and is not considered here. Note also that, taking relations (3.8) into account,
we can conclude that the long-period motions on the boundary of regions 1 and 2 are orbitally stable: the long-period
motions corresponding to the root x(1) are orbitally stable in the linear approximation, while the long-period motions
corresponding to the root x(2) are unstable.

Similar discussions show that the long-period motions corresponding to the root x = x1 are orbitally unstable in all
regions in which they exist, i.e. in regions 1, 2, 5 and 6, including the boundary separating regions 5 and 6. When � = 0
and on the boundaries �1 and �2 an investigation of the existence and stability of long-period motions corresponding
to the root x = x1, requires that terms higher than the fourth power in Hamiltonian (1.2) should be taken into account
and this is not done here. The long-period motions corresponding to the root x = x2 are orbitally stable in all regions in
which they exist (in regions 1, 2, 5, 6) and also on the boundary of regions 5 and 6.
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4. A non-linear analysis of the orbital stability of long-period motions

If � > 0, then, for a rigorous solution of the problem of the stability of long-period motions it is not sufficient to
analyse the linear approximation and it is necessary to investigate the stability taking non-linear terms into account.

We first of all note that in a system with Hamiltonian (3.13), the frequencies of linear oscillations have different
orders of smallness. This means that resonances up to the fourth order inclusive are impossible and, by a canonical
replacement of the variables �, �, 	, 
 → �1, �1, �2, �2, the Hamiltonian (3.13) can be reduced to the normal form

(4.1)

The quantities �1 and v0 are defined by expressions (3.15) and (3.11) respectively; the expressions for the constant
coefficients C20, C11, C02 have the form

(4.2)

The stability of the system with Hamiltonian (4.1) can be analysed using the Arnol’d-Moser theorem, for which it
is necessary to verify the condition of isoenergetic non-degeneracy

Using expressions (4.2) and (3.14), after some simplification it can be shown that for sufficiently small � the condition
of isoenergetic non-degeneracy is equivalent to the inequality

(4.3)

We will denote by x the root of Eq. (3.6), corresponding to an orbitally stable family of long-period motions in the
linear approximation.

Condition (4.3) was verified numerically. Calculations showed that when 0 <  < 1 the family of long-period motions,
orbitally stable in the linear approximation, corresponding to the root x = x0, will also be orbitally stable in the complete
non-linear system. Only the set of points corresponding to the curve �1 (see Fig. 1), where condition (4.3) is not satisfied,
may be an exception. The family of long-period motions, orbitally stable in the linear approximation, corresponding
to the root x = x2, will also be orbitally stable in the complete non-linear system, with the exception, perhaps, of the
curve �2 (Fig. 1), where condition (4.3) is not satisfied. To solve the problem of the orbital stability of the long-period
motions corresponding to the roots x0 and x2 on the curves of �1 and �2 respectively, an analysis is necessary taking
into account terms no less than the sixth power of the Hamiltonian function (1.2). This problem is not considered in
this paper.

5. The orbital stability of periodic motions of a satellite close to its steady rotation

We will consider the motion of a satellite about the centre of mass in a central gravitational field. The satellite is
a dynamically symmetrical rigid body, the centre of mass O of which moves in a circular orbit. Suppose Oxyz is a
coupled system of coordinates, the axes of which are directed along the principal central axes of inertia of the satellite
(the Oz axis coincides with the axis of dynamic symmetry). The axes of the orbital system of coordinates Oxyz are
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directed along the radius-vector of the centre of mass (OZ), along the transversal (OX) and the binomial to the orbit
OY. The orientation of the coupled system of coordinates with respect to the orbital system is specified by the Euler
angles �, �, �.

The equations of motion of the satellite about the centre of mass can be written in canonical form with Hamiltonian14

(5.1)

The dimensionless momenta, corresponding to the coordinates �, �, �, are denoted by p�, p�, p�. The angle � is the
cyclic coordinate, and hence in Eq. (5.1) we will assume that p� = �� = const, where � = C/A and � = �0/�0, A, B and
C (A = B) are the principal central moments of inertia, �0 is the average motion of the centre of mass in the orbit, �0
is the projection of the angular velocity of the satellite onto its axis of dynamic symmetry, and the parameter � can be
any real number.

The canonical system with Hamiltonian (5.1) has the particular solution15

(5.2)

which describes a cylindrical precession, representing steady rotation of the satellite about its axis of dynamic symmetry,
situated perpendicular to the orbital plane.

The problem of the stability of cylindrical precession was investigated in detail in Refs 4–17. In Fig. 3 we show a
diagram of the stability of the cylindrical precession14; the area of instability is shown hatched. In region I the quadratic
part of the Hamiltonian of the equations of perturbed motion is positive-definite and the cylindrical precession is stable.
In region II the quadratic part of the Hamiltonian of the equations of perturbed motion is alternating. A non-linear
analysis of the stability has shown,14 that on the curve �, corresponding to fourth-order resonance, there are two parts
of instability of the cylindrical precession. These parts correspond to values of the parameter � from the intervals
(0.384642, 0.449337) and (−1.742396, −1.566742). At all other points of the region II the cylindrical precession is
stable. Note that on the curve � the parameter � takes values in the range (−∞, 3/2), where points on the curve are
uniquely defined by the value of �.

Using the procedure described in Sections 2–4, we analysed the stability of the short-period and long-period motions
of the satellite, close to its cylindrical precession, for values of the parameters corresponding to the curve �. To do this
we expanded Hamiltonian (5.1) in series in the neighbourhood of solution (5.2), we obtained its normal form (1.2),

Fig. 3.
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and we then carried out calculations using the formulae in Sections 2–4. Omitting the lengthy calculations, we will
merely present the final results.

Almost everywhere on the curve � the families of short-period motions of the satellite are orbitally stable. Values
of the parameter � close to −1.340550 are an exception. In this case, of the stable short-period motions there is one
unstable periodic motion which simultaneously belongs both to the family of short-period motions and to the family of
orbitally unstable long-period motions. When � = −1.340550, to solve the problem of the stability of the short-period
motions it is necessary to analyse terms no lower than the sixth power in the Hamiltonian of the perturbed motion.
When � = −2 and � = 2/3 (a spherically symmetrical satellite), the coefficient b of the normal form (1.2) vanishes and
as a result Sections 2–4 cannot be used.

An analysis of the stability of the long-period motions showed that when

on the curve of � there is exactly one family of orbitally stable long-period motions. When

there are two families of orbitally stable long-period motions and one family of orbitally unstable long-period motions.
If

then two families of orbitally unstable long-period motions and one family of orbitally stable long-period motions
exist. At points of the curve �, corresponding to values of the parameter

there is one family of orbitally stable long-period motions and one family of orbitally unstable long-period motions.
At the point corresponding to the value � = −1.340550, there are three families of long-period motions. In this case,
on the basis of the results in Sections 3 and 4, one can establish the orbital stability of the long-period motions of two
families, while the problem of the orbital stability of the long-period motions of the third family remains open. To
solve this it is insufficient to analyse terms of the fourth power of the expansion of the Hamiltonian function in series
in the neighbourhood of solution (5.2). For this reason we did not investigate the orbital stability of the long-period
motions for � = −1.314341 and � = −1.926664.
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